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Abstract. We present an interesting connection between order statistics and unstable periodic
orbits of chaotic maps. This can be used to locate all the unstable periodic points (of a given order)
of one-dimensional chaotic maps with continuous invariant density. The densities of the ordered
variates of the iterates are discontinuous exactly at unstable periodic points of the map. This is
illustrated using the logistic map, where densities corresponding to a small number of iterates
have been obtained in closed form. This scheme can also be applied to a class of continuous-time
systems where the successive maxima of the time series behave as if they were generated from a
unimodal map. We demonstrate this by using the Lorenz model.

1. Introduction

Existence of a dense set of unstable periodic orbits is one of the characteristic properties of a
chaotic system [1]. These orbits represent the skeleton for the strange attractor of dissipative
dynamical systems. Many quantities that characterize chaos in the system, such as the fractal
dimension, the average Lyapunov exponent, the entropy and the invariant measure of the
corresponding attractor can be determined by knowing the properties of unstable periodic
orbits [2–6]. Further, the topological analysis of time series involves the computation of
unstable periodic orbits; for a recent review see [7]. Extraction of unstable periodic orbits is
a necessary step in several studies. For example, knowledge of the locations of various cycles
is necessary for control of chaos [8]. Cycles are found to be useful in the synchronization
of chaotic signals [9]. Moreover, quantization of classically chaotic conservative systems is
accomplished, in the semiclassical regime, by a series expansion with respect to the lengths
and stability coefficients of the periodic orbits [10]. The importance of unstable periodic orbits
and their detection has attracted the attention of several researchers and a number of numerical
methods have since been developed to extract unstable periodic orbits [2,11–16]. In this paper
we present an interesting connection between unstable periodic orbits and order statistics and
demonstrate that it can be used to extract all the unstable periodic points of one-dimensional
chaotic maps using order statistics.

The theory of extreme values and its generalization to order statistics is a classic subject and
is extensively used in the study of independent and identically distributed random variables [17].
Whenever the points of sample space can be compared based on their numerical value, say
as happens in the real line, one can think of new random variates such as maximum, second
maximum etc. For example, let the outcomes of two dice, when thrown simultaneously, beD1

andD2. Then the random variate defined asv = max{D1,D2} is an ordered random variate.
Let {X0, X1, . . . , Xn−1} be a sequence ofn random numbers and their cumulative distribution
function beF(x). If the members of the above sequence are independent and identically
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distributed random variables, then the cumulative distribution of the ordered variate defined
as the largest value in sequence is[F(x)]n. LetXkn (16 k 6 n) be thekth largest value in the
set i.e.,Xnn 6 Xn−1

n . . . 6 Xkn 6 . . . X2
n 6 X1

n. Order statistics is the study of the distributional
properties ofXkn.

Statistics of ordered variates such as extreme events/values are important in many areas of
physical and applied sciences. For example, the breaking strength of a specimen is determined
by its weakest element. Flood is the maximum discharge of water from a river. Extreme
yields may characterize the occurence of bankruptcy or foreign-exchange realignments. More
recently, it has been applied to diffusion process and economic modelling [18,19].

The detection of unstable periodic orbits using order statistics works for all one-
dimensional chaotic maps for which the existence of smooth invariant density is guaranteed.
This includes measure (Lebesgue measure) preserving transformations like tent map (which is
a discrete time one-dimensional analogue of Hamiltonian systems). Since there is no natural
ordering of points in spaces of dimension greater than one, order statistics of the iterates of
higher-dimensional systems is nontrivial and hence we will not address that issue here; see [20]
for details. Extreme-value statistics is the study of the distributional properties of the maximum
of a sequence. The formulation of the extreme-value statistics for one-dimensional chaotic
systems is discussed in [21]. It has been shown that the extreme-value density is discontinuous
on a set of points belonging to the unstable periodic orbits of the map [21]. However, we find
that the extreme-value analysis does not locate all the unstable periodic points. The extreme-
value density picks up only one point from each orbit corresponding to the maximum of the
points in that orbit. Even in the case where we know the map exactly, this information cannot
be used to generate other points of the same periodic orbit, as these orbits are unstable. Thus,
one would like to have a scheme which would directly yield all the points of the orbit. Further,
we find that the densities of other ordered variates also exhibit discontinuities and these points
of discontinuity also belong to the unstable periodic points. This has motivated us to extend
the analysis to order statistics instead of the simple extreme-value analysis in order to locate
all the unstable periodic orbits.

2. One-dimensional chaotic maps

Let f (x) : [a, b] → [a, b] be a continuous, one-dimensional chaotic map with an invariant
densityρs(x). Let{x0, x1 = f (x0), . . . , xn−1 = f n−1(x0)} be ann-point set. LetXkn be thekth
largest member of the this set. Let the density of thekth largest member be denoted byρkn(x).
The order statistics of one-dimensional chaotic maps is formulated based on the elementary
probability notions and is presented in appendix A.

The order densityρkn(x) for anyn with k 6 n is, in general, discontinuous on a set of
points. The connection between order statistics and unstable periodic points can be stated as
follows. LetSkn be the set of locations of the discontinuities ofρkn. We observe that the set

On =
n⋃
k=1

Skn for all n (1)

is equal to the set of all interior (excluding the end pointsa, b) periodic points of orders strictly
less thann.

We now illustrate this interesting connection by applying it to the logistic map,

xn+1 = f (xn) : [0, 1]→ [0, 1] = λxn(1− xn) (2)

for λ = 4, a well-studied unimodal map exhibiting chaos [1] with a smooth invariant density

ρs(x) = 1

π
√
x(1− x) . (3)
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The order densities for a small number of iterates have been obtained analytically based
on the formalism discussed in appendix A. Theρ1

3(x), ρ
2
3(x) andρ3

3(x) of the logistic map are

ρ1
3(x) =



1

4π
√
x(1− x) 06 x < 3

4
7

4π
√
x(1− x)

3

4
6 x < 5 +

√
5

8
3

π
√
x(1− x)

5 +
√

5

8
6 x < 1

(4)

ρ2
3(x) =



3

4π
√
x(1− x) 06 x < 5−√5

8
2

π
√
x(1− x)

5−√5

8
6 x < 3

4
5

4π
√
x(1− x)

3

4
6 x < 5 +

√
5

8

0
5 +
√

5

8
6 x < 1

(5)

ρ3
3(x) =



2

π
√
x(1− x) 06 x < 5−√5

8
3

4π
√
x(1− x)

5−√5

8
6 x < 3

4

0
3

4
6 x < 1.

(6)

If the analysis is restricted to extreme values alone, the period-two point(5−√5)/8 could
not be located at all, see equation (4). In the present analysis, all the unstable periodic orbits of
orders less than three, namely{(5−√5)/8, 3

4, (5 +
√
(5))/8} are picked up as discontinuities

of ρk3(x) for somek 6 3, as can be seen in equations (4)–(6).
In order to detect the locations of higher-order periodic orbits, we have to consider the sets

of large number of iterates. The order densities of larger sequences can be obtained numerically.
The numerical procedure for computing the order densities of one-dimensional chaotic maps
is as follows. Given a map, the invariant density is obtained using the histogram of a large
number of iterates after rejecting the transients. This exercise precedes the computation of order
densities as the existence of invariant density is necessary and sufficient to render meaning to
the averaging procedure. Then the order densities are computed as described below. Starting
with an initial condition,n − 1 successive iterates of the map are obtained and arranged in
descending order. Thekth largest member of the set is thus picked up. This is repeated for
large number of realizations where the initial condition for the second realization is taken as
the(n−1)th iterate. The whole procedure is repeated for many initial conditions. A histogram
of the values ofkth largest member ofn iterates is thus obtained representingρkn. The typical
number of realizations and initial conditions used in our numerical studies are 104 and 103,
respectively.

The numerically computed order densitiesρk4 for all k 6 4 and the remarkable
correspondence between the order densities and the unstable periodic points of the order less
than four is shown in figure 1. This enables one to extract the unstable periodic points of any
order by choosing an appropriaten. The locations of the cycles are, thus, read off from the
extremely sharp discontinuities of the densities. This connection can be rigorously established
and the relevant mathematical treatment is discussed in appendix B.
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Figure 1. Numerically computedρk4 for k = 1, 2, 3
and 4 of the logistic map (107 initial conditions, bin
width = 0.001). The locations of the discontinuities and
the cycle points of all orders<4 are compared. The cycle
points are indicated by vertical lines. Note the absence
of discontinuity at the origin which is a fixed point (see
the text).

Figure 2. Order density of the logistic map forλ =
3.96. The Lyapunov exponent forλ = 3.96 is 0.533 75
and hence is in the chaotic regime. (a) ρ2

3(x); (b)
corresponding invariant density.

Further, the topological entropy, which is a quantitative measure of chaos in the system,
can be estimated† from the number of periodic orbits as follows:

h = lim
n→∞

1

n
lnN(n) (7)

whereN(n) is the total number of periodic points of ordern. We denote the number of elements
in a setA by Card(A). SinceN(n) = Card(On+1) − Card(On), it can be obtained from the
discontinuities ofρkn+1(x)(k = 1 . . . n+1) and ofρkn(x)(k = 1 . . . n). In the case of the logistic
map we obtain Card(On) as 3, 9, 21, 51 and 105 forn = 3, 4, 5, 6 and 7, respectively. Since
this formalism is based on the discontinuities of the density over an interval [a, b], it cannot
indicate a periodic point occurring at the extreme pointsa andb of the interval. Thus, in the
above list (see also figure 1), the fixed point at the origin is not included. The topological
entropy calculated withn = 7 is 0.6648, which is within 4% of the exact value ln 2. However,
the value of the topological entropy approaches the exact value for larger and largern.

We now turn to cases with continuous map with discontinuous invariant densities. For the
logistic map withλ < 4, the invariant density,ρs(x) is not available in closed form and one
resorts to numerical schemes, see, for example, [23]. However, for our purpose, the existence
of ρs(x) can be numerically checked and is sufficient for computing order densities. For most
λ < 4, ρs(x) itself is discontinuous on a large number of points. Thus, the corresponding
order densities pick up discontinuities at those points at whichρs(x) is discontinuous and
also at unstable periodic points. Since the strength of the inherent discontinuities ofρs(x) in
ρkn(x) is large compared with that of the discontinuities at periodic points, it is numerically
difficult to count or detect their locations. Theρ2

3(x) of the logistic map forλ = 3.96 and the
corresponding invariant density are shown in figure 2. It can be seen that the discontinuties in
ρ2

3(x) corresponding to the unstable periodic points are weak.
The analysis so far is confined to the map which is continuous with smooth invariant

density. If the map is discontinuous, then the order densities of its iterates pick up
additional discontinuities which do not belong to the unstable periodic orbits. The additional
discontinuous points ofρkn(x) belong to the points at which either the map,f , or any of its

† To the best of our knowledge, this estimate is an upper bound on the topological entropy, see [22] for details.
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Table 1. Periodic orbits and discontinuities of shift map.

Map Fixed points Discontinuities of map

f — 1
2

f 2 1
3 and 2

3
1
4 ,

1
2 and 3

4

f 3 4
7 and 6

7
1
8 ,

1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 and 7

8

n− 1 composite maps is discontinuous. This is illustrated below by using the Bernoulli shift
map which is defined as

xn+1 = f (xn) = 2xn mod 1 x ∈ [0, 1). (8)

For example,ρk3(x), k 6 3 exhibit discontinuities at the fixed points and the discontinuities
of the mapsf 3, f 2 andf , see table 1. Thus, when the map is discontinuous (in the sense
of a function having discontinuity), with a smooth invariant density, the order densities show
discontinuities corresponding to points of discontinuity of the map as well as unstable periodic
points. On the other hand, if the map is continuous with an invariant density which is
discontinuous at some points, the corresponding order densities exhibit discontinuities at those
points plus the unstable periodic points. In summary, the discontinuities of the invariant density
and that of the map appear as discontinuities in the order densities in addition to the unstable
periodic points.

3. Lorenz system

There are situations where the essence of the dynamics of a continuous-time dynamical system
is captured effectively by one-dimensional maps or their equivalent. In his classic paper Lorenz
showed that the successive peaks of a one-dimensional time series behave like iterates of a
map [24], see also [25]. We work with the Lorenz model [24]

ẋ = σ(y − x) ẏ = x(r − z)− y ż = xy − bz (9)

for parametersr = 28,σ = 10 andb = 8
3.

We compute theρkn(x) for different n for the map constructed out of the successive
maxima of the time series corresponding to the state space variablez. Existence of an
invariant density for the so constructed map is verified numerically.ρkn(x) of this map is
also discontinuous on a set of points.ρk5(x) for all k 6 5 is shown in figure 3. The topological
entropy of the map is calculated using equation (7). Forn = 4, 5 and 6, the topological
entropyh = 0.6212, 0.6664 and 0.6679 respectively, showing a reasonable convergence in
the numerical value of topological entropy.

It is important to consider the effect of noise on the order densities to explore the possible
applicability of this method to an experimental time series convoluted with noise. Here, the
distribution and strength of the noise play a decisive role. Our preliminary investigations
involve the addition of noise, generated from uniform distribution, to the iterates of the logistic
map withλ = 4. The spillover from [0, 1] is reinjected. The discontinuity at the periodic
points is observed to smoothen with an increase in the strength of the noise. The effect of
noise onρ2

3(x) of the logistic map withλ = 4 is shown in figure 4.
In summary, we have presented a connection between order statistics and the unstable

periodic orbits of a chaotic map which can be used to extract all the unstable periodic points of
chaotic maps with smooth invariant density. This method uses order statistics. We calculate
ρkn of the logistic map analytically forn = 3 and numerically forn > 3 and illustrate that their
discontinuities coincide with the unstable periodic points of all orders less thann. Further,
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Figure 3. ρk5(x) for all k 6 5 of the map constructed
using the successive maxima of the time seriesz(t) of the
Lorenz system.

Figure 4. ρ2
3(x) of the logistic map withλ = 4

for different strengths of additive noise generated from
uniform distribution. The random number added is
r = αx, whereα is proportional to the strength of the
noise andx ∈ [0, 1] is a uniform random number. (a)
0% noise; (b) 0.2% noise; (c) 1% noise; (d) 5% noise.

we demonstrate the applicability of this method to the map constructed out of the successive
maxima of the time seriesz(t) of Lorenz equations. The unstable periodic orbits enumerated
are used to estimate topological entropy. We present the formulation of the order statistics as
well as an outline of the proof which establishes the connection between order statistics and
unstable periodic orbits for any continuous map with a smooth invariant density in appendices A
and B, respectively.
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Appendix A. Formulation of order statistics

Let f (x) : [a, b] → [a, b] be a continuous, one-dimensional chaotic map with an invariant
densityρs(x). Let {x0, x1 = f (x0), . . . , xn−1 = f n−1(x0)} be ann-point set. LetXkn be the
kth largest member of the this set. Let the density of thekth largest member be denoted by
ρkn(x).

The formulation of the order statistics involvesP kn ([x, x + dx]), denoting the probability
that the value of thekth largest member ofn iterates lies in the interval [x, x + dx].

P kn ([x, x + dx]) = 1

(k − 1)!

n−1∑
i1=0

∑
I

Prob[xi1 ∈ (x, x + dx); xi > x|i ∈ I; xj < x|j ∈ J ]

(10)

whereI = {i2, . . . , ik} andJ = {ik+1, . . . , in} with {i1, . . . , in} being a permutation of
{0, . . . , n − 1}. The summation overI requires some amplification. When the density of
thekth largest member of the set is considered, there will bek − 1 members greater thanXkn.
All possible permutations of{0, . . . , n − 1} is equivalent to sum overI with every ik ∈ I
running from 0 ton−1. This summation, however, has contribution from the permutations of
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thek− 1 members ofI among themselves which are(k− 1)! in number and hence we divide
the expression with(k − 1)!, see equation (10).

The cumulative distributionFkn (x) = Prob(Xkn 6 x) and is given by

Fkn (x) =
1

(k − 1)!

n−1∑
i1=0

∑
I

∫ x

a

dx ′
[(∏

i∈I

∫ b

x ′
dxi

)(∏
j∈J

∫ x ′

a

dxj

)
ρ(x1, . . . , xn)|xi1=x ′

]
(11)

whereρ(x1, x2, . . . , xn), {xi} ∈ (a, b), is ann-point joint density and can be written for a
deterministic mapf with an invariant densityρs(x) as

ρ(x0, x2, . . . , xn−1) = ρs(x0)

n−1∏
j=1

δ(xj − f (j)(x0)) (12)

with δ( · ) being the Dirac delta function.
Thus,ρkn(x) is given by the derivative ofFkn (x).

ρkn(x) =
1

(k − 1)!

∑
I
ρs(x)

∏
i∈I
2(f i(x)− x)

∏
j∈J

2(x − f j (x)) +
1

(k − 1)!

n−1∑
i1=1

∑
I

li1∑
α=1

× ρs(gi1α(x))

| d
dzf

i1(z)|z=gi1α(x)
∏
i∈I
2(f i(gi1α(x))− x)

∏
j∈J

2(x − f j (gi1α(x))) (13)

where2( · ) is the Heaviside step function. The set{gi1α(x)/f i1(gi1α(x)) = x} are the
preimages ofx with respect tof i1 andIi1 is the number of such preimages.

Appendix B. Connection between order statistics and unstable periodic orbits

Our central result is: given a continuous one-dimensional mapf : [a, b] → [a, b] with
a continuous invariant densityρs(x), the order densityρkn(x) is discontinuous at an interior
pointx? if and only if x? is an unstable periodic point such thatf l(x?) = x? with l 6 n− 1.

We now give an outline of the proof where we first explain the notation used. (i) A periodic
point of orderl is denoted bypjlβ , i.e.,f l(pjlβ) = pjlβ . The indexβ = 1, . . . , l corresponds
to the distinct points of thel-cycle. In a chaotic map, in general, there exist more than one
l-cycle, and the number ofl-cyclesNl increases withl. The indexj runs over the different
l-cycles and hencej = 1, . . . , Nl . For example, in the logistic map, we have two orbits of
period three. The periodic points of a givenl-cycle are ordered such thatpjll = maxβ{pjlβ}
corresponds to the maximum of that cycle. (ii) Lety = f i(x). The set of preimages ofx with
respect tof i are{giα(x)|f i(giα(x)) = x}, α = 1, . . . , Ii whereIi is the number of preimages.
For example, the preimages ofx = 3

4 of the logistic map are{ 34, 1
4}.

As a first step, we show that the extreme-value density,ρ1
n(x) is discontinuous atx if and

only if x is the maximum point of a periodic orbit, i.e.,x = pjll , l 6 n − 1, j = 1, . . . Nl .
Proving this involves two stages namely, to show that the extreme-value density cannot be
discontinuous atx unlessx is the maximum of a periodic orbit and then show thatρ1

n(x) is
discontinuous at the maximum of all the periodic points. The extreme-value density can be
formulated as

ρ1
n(x) = ρs(x)

n−1∏
j=1

2(x − f j (x)) +
n−1∑
i=1

Ii∑
α=1

Aiα(x)2(x − giα(x))
∏
j 6=i
2(x − f j (giα(x)))

(14)

where

Aiα(x) = ρs(giα(x))/
∣∣∣∣ d

dz
f i(z)

∣∣∣∣
z=giα(x)

. (15)
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If the invariant density is continuous, then so areAiα(x). Equation (14) can be recast as

ρ1
n(x) = ρs(x)C0(x) +

n−1∑
i=1

Ii∑
α=1

Aiα(x)Ciα(x). (16)

As all the terms in equation (14) are positive definite, proving eitherC0(x) or Ciα(x) are
discontinuous at a point is sufficient to proveρ1

n(x) is discontinuous. Also note2(z) =
(1 + sgn(z))/2 is discontinuous only atz = 0.

Sinceρs(x) and henceAiα(x) are continuous,ρ1
n(x) is discontinuous only if either

2(x−f l(x)) for somel 6 n−1, or2(x−giα(x)) for somei 6 n−1, or2(x−f m(giα(x)))
for somem 6= i, m 6 n− 1 is discontinuous.

If 2(x − f l(x)) is discontinuous thenx = f l(x) implying x ∈ {pjlβ}. Considering
C0(pjlβ + ε) (whereε is an infinitesimal quantity of appropriate sign), we have

C0(pjlβ + ε) =
n−1∏
k=1

2(pjlβ − f k(pjlβ) + O(ε)). (17)

If pjlβ 6= pjll , in the product, there exists akl such thatf kl (pjlβ) = pjll and the product
vanishes aspjll > pjlβ for all β < l. This shows thatC0(x) cannot be discontinuous unless
x = pjll .

2(x−giα(x)) is discontinuous atx = giα(x). We havef i(x) = f i(giα(x)) = x and this
impliesx ∈ {pjiβ}. ConsideringCiα(pjiβ + ε), the leading-order term is

Ciα(pjiβ + ε) = 2
(
ε

[
1− d

dx
giα(x)|x=pjiβ

])∏
k 6=i
2(pjiβ − f k(pjiβ) + O(ε)). (18)

It can be shown thatg′iα(x) = 1/f ′(giα(x)) and|f ′(giα(pjiβ))| is always greater than one for
all the unstable periodic orbits. This means the first2 function in the above equation is always
nonzero. Thus, by a similar reasoning as outlined above, the second term in the product cannot
survive unlessx = pjii .

Consider2(x − f m(giα(x))) which is discontinuous atx = f m(giα(x)) for some
m ∈ {1, . . . , n − 1}\{i}. There exists anl such thatx = f m(giα(x)) implies x = f l(x),
wherel = max{m− i, i −m} implying x ∈ {pjlβ}. By using the previous arguments, one can
show that the discontinuity cannot occur unlessx = pjll . This proves thatρ1

n(x) cannot be
discontinuous unlessx = pjll for somel andj .

Conversely, we show that at everyx = pjll , ρ1
n(x) is discontinuous. This is done in two

steps for convenience: (a) ifpjll is such thatl > (n− 1)/2,C0(x) registers a discontinuity at
x = pjll while (b) if l 6 (n− 1)/2,Ciα(x) will be discontinuous atx = pjll .

(a) ConsiderC0(pjll + ε) and writing it as a product of three terms, we have

C0(pjll + ε) = 2
(
ε

[
1− d

dx
f l(x)|x=pjll

]) l−1∏
k=1

2(pjll − f k(pjll) + O(ε))

×
n−l−1∏
k=1

2(pjll − f k+l(pjll) + O(ε)). (19)

f k(pjll) < pjll for all k 6 l − 1 andn − l − 1 < l − 1 if l > (n − 1)/2. This
implies that the product terms in the equation (19) are nonzero and the first term can also
be made nonzero by choosing anε of appropriate sign. This proves that ifl > (n − 1)/2, at
x = pjll, l 6 n− 1, j = 1, . . . , Nl , C0(x) and henceρ1

n(x) are discontinuous.
(b) We prove that, givenx = pjmm,m 6= i andm 6 (n− 1)/2, there exists a2 function

in Ciα(x), see equation (14), with argumentx−f l(giα(x)), l 6= i such thatl = i±mwhich is
discontinuous atx = pjmm implyingCiα(x) and henceρ1

n(x) to be discontinuous atx = pjmm.
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Similarly, one can prove that the density corresponding tok = n, the minimum of the
iterates,ρnn(x) is discontinuous atx if and only ifx = pjl1, i.e., at the minimum of the periodic
orbits.

Finally, it can be proven that at every periodic pointx = pjlβ , there exists ak such that
the order densityρkn(x) is discontinuous atpjlβ .

ρkn(x), the order density of thekth maximum of ann-point sequence of iterates is given
by equation (13). Given a periodic pointp, one can show that the index set{0, . . . , n− 1} can
be written in the following way:

I ′ = {i|f i(p) > p}
J ′ = {j |f j (p) < p}
L′ = {l|f l(p) = p}

(20)

such that

{0, . . . , n− 1} = I ′ ∪ J ′ ∪ L′. (21)

This partition is equivalent to chosing ak for a givenp andn. Oncen andk are fixed, the
order densityρkn(x) can be shown to be discontinuous atx = p by an argument similar to that
outlined in the case ofρ1

n.
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